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ABSTRACT 

This study aims to determine forecasting model with Box-Jenkins method and obtain results of 

data forecasting the number of tourists visiting in Toraja (Tanah Toraja and North Toraja regency) 

the future period. Research method used is applied research with quantitative data. Research 

procedures include identification of model, parameter estimation in model, verification and 

forecasting with using Minitab computer software. Based on the research obtained four models 

used in forecasting the number of tourists in Toraja the future period is ARIMA(1,1,1), 

ARIMA(2,1,1), ARIMA(1,2,1) and ARIMA(2,2,1). The correct criteria in selecting the best 

model is the model that has the smallest Mean Square (MS) value. In this case the time series 

model with the smallest MS value is ARIMA(2,2,1) that is 736062253. Thus, this model will used 

in forecasting is ARIMA(2,2,1) with equations 𝑍𝑡 = 1,2167𝑍𝑡−1 + 0,2605𝑍𝑡 + 0,1711𝑍𝑡−3 +
0,3061𝑍𝑡−4 + 𝑎𝑡 − 1,0323𝑎𝑡−1. The forecasting results for January to December 2021 is 149985, 

193099, 207559, 202903, 222426, 229294, 239108, 250921, 260701, 271895, 283037 and 

294221. 

Keywords: Forecasting, Box-Jenkins Method, Tourists. 

 

INTRODUCTION 

Forecasting is one of the most important elements in decision-making in various aspects. Basically 

forecasting is done based on historical data that is analyzed using certain ways (Kulendran & 

Wong, 2005). Such historical data is collected, analyzed and studied to be linked over time. The 

forecasting model is very different for each issue depending on the various factors that influence 

it. Although, in the forecasting will not be obtained accuracy with value of one hundred percent. 

However, this does not necessarily mean that forecasting is not necessary, this forecasting can at 

least provide a picture of a situation or event that may occur in the future, so that it can assist the 

decision-making process and preparation for future improvement (Ho et al., 2002). 
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The state of the population is increasing from year to year, causing the need for more and more 

tourist from time to time. Everyone will need entertainment to let go of saturation because of 

busyness and work done every day. The high demand level of tourism needs to be observed by 

the government in maintaining, protecting and preserving the attractions in order to provide 

comfort for the visitors. Therefore, the visitors number who come to the tourist attractions depends 

on the comfort of place for visitors (Baldigara & Mamula, 2015). 

Tourist attractions in Toraja which includes two districts of Tanah Toraja district and North Toraja 

district including Ma'nene Traditions, Rambu Solo ceremony, Kete Kesu, Londa, Batutumonga, 

Bori Parinding and Pohon Tarra, Ranteallo, Ne’ Gandeng Museum, Pallawa, Sarambu Assing 

Waterfall, Lolai and others. The existence of these attractions is very potential in an effort to 

increase economic growth in the two districts and must get special attention in improving the 

condition of existing attractions in Toraja (Adams, 2006) (Kausar & Gunawan, 2018). 

Based on data from the Tourism Office of South Sulawesi Province The visitation rate in Toraja 

continues to increase from time to time and the most visit in December because at that time there 

was a very spectacular event that was attended by tourists from various countries, the event is 

known as "lovely December" (Bakhtiar & Didiharyono, 2018). 

Increasing the number of tourists both local tourists and foreign tourists who continue to increase 

from time to time not only as something just as beneficial area (Singh, 2013) (Petrevska, 2017). 

But also it can only be something that happens more often in the absence of services that are less 

satisfactory service and infrastructure will be a disappointment for foreign tourists, resulting in a 

decrease in the number of tourists visiting the Toraja region and this is very detrimental to 

Indonesia generally and Toraja especially as a tourist destination (Crystal, 2012). 

One of method that can be used in predicting the number of tourists in future is forcasting model 

time series analysis with Box-Jenkins method or also known as ARIMA method (Baldigara & 

Mamula, 2015). This method can be used with studied the pattern of previous tourist data with 

regard to stationary and non stationary concept, autocovariance, autocorrelation function, partial 

autocorrelation function, backshiff operators and different operators. So time series analysis is 

used in this forecast because the pattern in the past will affect the pattern in the future (Chang & 

Liao, 2010). 

The general model representing the non-stationary time series is Autoregressive Integrated 

Moving Average model or ARIMA (p,d,q) with p, d, q is the level for the autoregressive process, 

differencing and moving average. Wei (2006) ARIMA (p,d,q) model can be written in the general 

form, 

(1 − 𝜙1𝐵 − 𝜙2𝐵2− ⋯ − 𝜙𝑝𝐵𝑝)(1 − 𝐵)𝑑𝑧̃𝑡 = (1 − 𝜃1𝐵− ⋯ − 𝜃𝑞𝐵𝑞)𝑎𝑡 

where, 𝜙1 ⋯ 𝜙𝑝 : parameter of AR model, (1-B)d : differencing level, 𝑍𝑡 : forecast value periode 

t, 𝜃1 ⋯ 𝜃𝑞 :  Parameter MA model, and 𝑎𝑡 : residual value period t. 

This method also uses iterative approach in identifying the best model. The advantage of this 

method in general is that it can analyze all time series data. The ARIMA model is said to be precise 

if the residual between the forecasting model with small historical data points, distributed 

randomly and independently of each other. Research with ARIMA model is also used by Sarpong 

(2013), Paul et al (2013), Biswas et al (2013), Steve (2014), Eni and Adeyeye (2015) which 

focuses its research on different cases. The use of ARIMA methods in predicting or forecasting 

data on the number of tourists coming to Toraja in visiting all tourism places in Toraja the future 
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period, so that local governments can prepare as early as possible good services and infrastructure 

necessary in preserving the attractions in providing comfort for the visitors. 

Based on the above explanation, this study aims to determine the forecasting model with Box-

Jenkins method and obtain results of data forecasting the number of tourists who visit tourism in 

Toraja the future period. Thus, the research is expected to give an idea to the local government 

about the number of tourists both local tourists and foreign tourists who visit the tourism in Toraja 

and can respond to the number of tourists by providing better service from year to year. 

 

METHODS 

The type of research used is applied research with quantitative data. The data used from the Central 

Statistics agency (BPS) of Tana Toraja and North Toraja for 60 periods from January 2012 to 

December 2016. Aswi and Sukarna (2008) the research procedure is  

1. Identification of model includes (a). Perform data plots with graphs. (b). Stationary data 

checking with ACF and PACF,  

2. Differences data if non-stationar happens at the data, and used ACF and PACF analysis for 

stationary data.  

3. The parameter estimation model includes (a). Determine the model coefficients, (b). Estimation 

the model and (c). Temporary model selection. 

4. Verification and forecasting phases include (a). Determination of the smallest Mean Square 

(MS) model, (b). Selection of the best model and (c) forecasting. 

 

RESULTS AND DISCUSSION 

Identification of Model 

The number of tourists visiting Toraja for monthly data is presented from January 2012 to 

December 2016, where the total period is 60 (months). Based on the research data, the graph is as 

follows, 

 

 

 

 

 

 

 

Figure 1. Trend graph a data 

Based on the data plot and trend graph of data analysis in Figure 1 it can be seen that tourist visits 

have increased every time and the actual value is still far from linear lines and has a large variance, 

so this trend graph including time series that is not stationary in the average, though without seeing 

ACF and PACF. 

In Figure 1 it shows 15 lags, in minitab if the number of lags is not requested it will automatically 

show the lag as much as the observation (n) ≤ 240, in this case the number of observations is 60 
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so 60/4 = 15 lag. In the identification of the original data is not yet formed model so that required 

first difference data to determine the stationary data. 

Differences of Data 
Figure 1 shows the data has not stationery then done the first differences so graph form is as 

follows 

 

Figure 2. Graph of data analysis after differences 

Based on Figure 4 we can see that the data is stationary, since the average does not move freely 

in a given time and has a fairly small variance and the actual value is close to a linear line. 

Box-Jenkins forecasting model is identified by observing the Autocorrelation Function (ACF) and 

Partial Autocorrelation Function (PACF) value. 
Autocorrelation Function: C2  
Lag        ACF      T    LBQ  Lag        ACF      T    LBQ  

  1  -0,422213  -3,24  11,06    8   0,008516   0,05  21,10 

  2   0,080420   0,53  11,47    9   0,026999   0,16  21,15 

  3   0,090006   0,59  11,99   10  -0,240178  -1,43  25,39 

  4  -0,274575  -1,79  16,92   11   0,214942   1,24  28,86 

  5   0,194301   1,20  19,44   12   0,016453   0,09  28,88 

  6   0,137676   0,83  20,73   13   0,053930   0,30  29,10 

  7  -0,073126  -0,44  21,10   14   0,028004   0,16  29,17 

 15  -0,077120  -0,43  29,65 

   

 
Figure 3. ACF Graph after differences 

Next, determine PACF graph is as follows, 

Partial Autocorrelation Function: C2  
Lag       PACF      T Lag       PACF      T 

  1  -0,422213  -3,24   9   0,037970   0,29 

  2  -0,119070  -0,91  10  -0,165956  -1,27 

  3   0,095954   0,74  11  -0,017758  -0,14 

  4  -0,232529  -1,79  12   0,068603   0,53 

  5  -0,020100  -0,15  13   0,191439   1,47 

  6   0,277918   2,13  14   0,041700   0,32 

  7   0,168095   1,29  15   0,026770   0,21 

  8  -0,076802  -0,59 
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Figure 4. PACF graph after differences 

Graph ACF in figure 3 looks data is stationary because the graphics dies down so it can be directly 

predicted the model and 𝜌𝑘  cut off after lag-10 or lag-q for highest level moving average. While, 

the PACF graph in Figure 4 is seen following the sine graph and exponential dies down graph, 

with  𝜙𝑘𝑘 value cut off at white noise after lag-1 and possibly on lag-2 or lag-p for highest level 
autoregresif. 

So the approximate model is ARIMA (1,1,1) or AR (1) because the ACF graph exponential dies 

down and PACF is cut off on lag-1, differences 1 time, MA (1) because the ACF graph cut off at 

lag-1 and PACF exponentially dies down (sinusoidally), so general form ARIMA (1,1,1) can be 

written 

𝑍𝑡 = (1 + 𝜙1)𝑍𝑡−1 − 𝜙1𝑍𝑡−2 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 

And also possible model estimation is ARIMA (2,1,1) or AR (2) because the ACF graph 

exponential dies down and PACF is cut off on lag-2, differences 1 time, MA (1) because the ACF 

graph cut off at lag-1 and PACF exponentially dies down (sinusoidally), so general form ARIMA 

(2,1,1) can be written 

𝑍𝑡 = (1 + 𝜙1)𝑍𝑡−1 + (𝜙2 − 𝜙1)𝑍𝑡−2 − 𝜙2𝑍𝑡−3 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 

Furthermore, second difference is done with the aim of looking at the comparison between Mean 

Square value with the first difference result. The graph is as follows. 

 

Figure 5. Graph of data analysis after second differences 

Based on figure 7 shows that data is already stationary because the number of production is almost 

the same and not moving freely in a certain time, the value of variance is also quite small and the 

average actual value is close to linear line. Next is determined the value of ACF and PACF. 
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Autocorrelation Function: C3  
Lag        ACF      T    LBQ Lag        ACF      T    LBQ 

  1  -0,578791  -4,41  20,45   9   0,104674   0,58  28,92 

  2   0,152077   0,90  21,89  10  -0,252268  -1,38  33,53 

  3   0,089543   0,52  22,40  11   0,135853   0,72  34,90 

  4  -0,175751  -1,02  24,39  12  -0,046886  -0,25  35,06 

  5   0,016594   0,09  24,41  13   0,042087   0,22  35,20 

  6   0,168259   0,96  26,30  14   0,036553   0,19  35,31 

  7  -0,148727  -0,83  27,81   15  -0,044783  -0,24  35,47 
  8   0,068724   0,38  28,14 

  

 

Figure 6. ACF graph after second differences 

Partial Autocorrelation Function: C3  
Lag       PACF      T Lag       PACF      T 

  1  -0,578791  -4,41   9   0,144715   1,10 

  2  -0,275069  -2,09  10  -0,096190  -0,73 

  3   0,069252   0,53  11  -0,142189  -1,08 

  4  -0,060865  -0,46  12  -0,121910  -0,93 

  5  -0,208133  -1,59  13   0,096160   0,73 

  6   0,091007   0,69  14   0,118201   0,90 

  7   0,106055   0,81  15  -0,048933  -0,37 

  8   0,016395   0,12 

   

 
Figure 7. PACF graph after second differences 

Graph ACF in figure 6 looks data is stationary because the graphics exponentially dies down 

(sinusoidally) and 𝜌𝑘 cut off after lag-10 or lag-q for highest level moving average. While, the 
PACF graph in Figure 4 is seen following the sine graph and exponential dies down graph, with  

𝜙𝑘𝑘 value cut off at white noise after lag-1 and possibly on lag-2 or lag-p for highest level 
autoregresif. 

So the approximate model is ARIMA (1,2,1) or AR (1) because the ACF graph exponential dies 

down and PACF is cut off on lag-1, differences 2 time, MA (1) because the ACF graph cut off at 

lag-1 and PACF exponentially dies down, so general form ARIMA (1,2,1) can be written 

𝑍𝑡 = (2 + 𝜙1)𝑍𝑡−1 − (1 + 2𝜙1)𝑍𝑡−2 + 𝜙1𝑍𝑡−3 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 
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And also possible model estimation is ARIMA (2,2,1) or AR (2) because the ACF graph 

exponential dies down and PACF is cut off on lag-2, differences 2 time, MA (1) because the ACF 

graph cut off at lag-1 and PACF exponentially dies down (sinusoidally), so general form ARIMA 

(2,2,1) can be written 

𝑍𝑡 = (2 + 𝜙1)𝑍𝑡−1 − (1 + 2𝜙1 + 𝜙2)𝑍𝑡−2 + (𝜙1 + 2𝜙2)𝑍𝑡−3 − 𝜙2𝑍𝑡−4 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 

Parameter Estimation 

After identifying the data and differences of data then the next step to determine parameter 

estimation of data. 

1. Model ARIMA (1,1,1) 

Based on Minitab calculation results obtained ARIMA (1,1,1) model with parameter 𝜙1 = -0,3868 

and 𝜃1 = 0,4915, then the equation model is obtained 

𝑍𝑡 = (1 + 𝜙1)𝑍𝑡−1 − 𝜙1𝑍𝑡−2 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 

𝑍𝑡 = (1 − 0,3868 )𝑍𝑡−1 + 0,3868 𝑍𝑡−2 + 𝑎𝑡 − 0,4915𝑎𝑡−1 

𝑍𝑡 = 0,6132𝑍𝑡−1 + 0,3868 𝑍𝑡−2 + 𝑎𝑡 − 0,4915𝑎𝑡−1 

With Mean Square (MS) value at first differences is 783047339. 

2. Model ARIMA (2,1,1) 

Based on Minitab calculation results obtained ARIMA (2,1,1) model with parameter 𝜙1 = -0,319, 

𝜙2 = -0,0834 and  𝜃1 = 5572, then the equation model is obtained 

 

 

𝑍𝑡 = (1 + 𝜙1)𝑍𝑡−1 + (𝜙2 − 𝜙1)𝑍𝑡−2 − 𝜙2𝑍𝑡−3 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 

𝑍𝑡 = (1 − 0,319)𝑍𝑡−1 + (−0,0834 + 0,319)𝑍𝑡−2 + 0,0834𝑍𝑡−3 + 𝑎𝑡 − 0,5572𝑎𝑡−1 

𝑍𝑡 = 0,681𝑍𝑡−1 + 0,2356𝑍𝑡−2 + 0,0834𝑍𝑡−3 + 𝑎𝑡 − 0,5572𝑎𝑡−1 

With Mean Square (MS) value at first differences is 795928310. 

3. Model ARIMA (1,2,1) 

Based on Minitab calculation results obtained ARIMA (1,2,1) model with parameter 𝜙1 = -0,6801 

and 𝜃1 = 0,9586, then the equation model is obtained 

𝑍𝑡 = (2 + 𝜙1)𝑍𝑡−1 − (1 + 2𝜙1)𝑍𝑡−2 + 𝜙1𝑍𝑡−3 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 

𝑍𝑡 = (2 − 0,6801)𝑍𝑡−1 − (1 + 2(−0,6801))𝑍𝑡−2 − 0,6801𝑍𝑡−3 + 𝑎𝑡 − 0,9586𝑎𝑡−1 

𝑍𝑡 = 1,3199𝑍𝑡−1 + 0,3602𝑍𝑡−2 − 0,6801𝑍𝑡−3 + 𝑎𝑡 − 0,9586𝑎𝑡−1 

With Mean Square (MS) value at first differences is 839223359. 

4. Model ARIMA (2,2,1) 

Based on Minitab calculation results obtained ARIMA (2,2,1) model with parameter 𝜙1 = -0,7833, 

𝜙2 = -0,3061 and 𝜃1 = 1,0323, then the equation model is obtained 
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𝑍𝑡 = (2 + 𝜙1)𝑍𝑡−1 − (1 + 2𝜙1 + 𝜙2)𝑍𝑡−2 + (𝜙1 + 2𝜙2)𝑍𝑡−3 − 𝜙2𝑍𝑡−4 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 

𝑍𝑡 = (2 − 0,7833)𝑍𝑡−1 − (1 − 2 (0,7833) − 0,3061)𝑍𝑡−2 + (0,7833 − 2(0,3061)𝑍𝑡−3

+ 0,3061𝑍𝑡−4 + 𝑎𝑡 − 1,0323𝑎𝑡−1 

𝑍𝑡 = 1,2167𝑍𝑡−1 + 0,2605𝑍𝑡 + 0,1711𝑍𝑡−3 + 0,3061𝑍𝑡−4 + 𝑎𝑡 − 1,0323𝑎𝑡−1 

With Mean Square (MS) value at first differences is 736062253. 

Verification and Forecasting 

This stage aims to examine the best model that is by finding the smallest MS (Mean Square) value 

based on the result of parameter estimation that is as follows 

- ARIMA (1,1,1) model has Mean Square value of 783047339 

- ARIMA (2,1,1) model has Mean Square value of 795928310 

- ARIMA (1,2,1) model has Mean Square value of 839223359 

- ARIMA (1,1,1) model has Mean Square value of 736062253 

Based on these four ARIMA models, it can be concluded that ARIMA (2,2,1) model has the 

smallest MS value. Thus the appropriate model for predicting tourist data is the ARIMA (2,2,1) 

model with equations as follows, 

𝑍𝑡 = 1,2167𝑍𝑡−1 + 0,2605𝑍𝑡 + 0,1711𝑍𝑡−3 + 0,3061𝑍𝑡−4 + 𝑎𝑡 − 1,0323𝑎𝑡−1 

ARIMA (2,2,1) model is the most suitable model for modeling time series data and forecasting 

future periods of data on the number of tourists coming to visit Tourism in Toraja. With the results 

of forecasting, 

Forecasts from period 60 

                    95% Limits 

Period  Forecast   Lower   Upper  Actual 

    61    149985   96799  203172 

    62    193099  139016  247182 

    63    207559  147641  267477 

    64    202903  138044  267763 

    65    222426  154848  290004 

    66    229294  158182  300406 

    67    239108  165308  312908 

    68    250921  174731  327111 

    69    260701  182277  339124 

    70    271895  191568  352222 

    71    283037  200990  365085 

    72    294221  210649  377793 

The above forcast table shows that for the period (t) after the next 60 months from January to 

December 2021 there is a significant increase each month with 95% limits lower and limit upper 

of actual data. 

 

CONCLUSION 

Based on the research results can be obtained conclusion is as follows, (1) The results obtained 

four time series models used in forcasting the number of tourists in Toraja in future period is 

ARIMA(1,1,1), ARIMA(2,1,1), ARIMA(1,2,1) and ARIMA(2,2,1). The correct criteria in 

selecting the best model is the model that has the smallest Mean Square (MS) value. In this case 

the time series model with the smallest MS value is ARIMA(2,2,1) that is 736062253. Thus, this 

model used in forecasting is ARIMA(2,2,1) with the general form 𝑍𝑡 = 1,2167𝑍𝑡−1 +
0,2605𝑍𝑡 + 0,1711𝑍𝑡−3 + 0,3061𝑍𝑡−4 + 𝑎𝑡 − 1,0323𝑎𝑡−1; (2) the forecasting results number 
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of tourists in Toraja for January to December 2021 is 149985, 193099, 207559, 202903, 222426, 

229294, 239108, 250921, 260701, 271895, 283037 and 294221. Results forcasting the number of 

tourists visiting from January to December from year to year increased. Thus, expected that the 

local government, especially the tourism office can formulate an ideal policy in the maximum 

service or best service of tourists who visit tourism places in Toraja. Local government should 

also be more serious to develop the existing tourist attractions there because with the increasing 

number of tours that visit it can automatically provide income for the improvement of the regional 

economy. 
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