Penerapan Metode Silhouette Coefficient untuk Evaluasi Clustering Obat
PDF

Keywords

Kmeans
Clustering
Silhouette coeficient

Abstract

Dalam penelitian ini menggunakan metode k-means, metode ini dapat digunakan untuk menjadikan beberapa obat yang mirip menjadi suatu kelompok data tertentu. Salah satu cara untuk mengetahui tingkat kemiripan data adalah melalui perhitungan jarak antar data. Semakain kecil jarak antar data semakin tinggi tingkat kemiripan data tersebut dan sebaliknya semakin besar jarak antar data maka semakin rendah tingkat kemiripannya. Tujuan akhir clustering adalah untuk menentukan kelompok dalam sekumpulan data yang tidak berlabel, karena clustering merupakan suatu metode unsupervised dan tidak terdapat suatu kondisi awal untuk sejumlah cluster yang mungkin terbentuk dalam sekumpulan data, maka dibutuhkan suatu evaluasi hasil clustering. Berdasarkan evaluasi yang dilakukan terhadap hasil clustering dengan nilai dari silhouette coeficient = 0,4854.

 

In this study using the k-means method, this method can be used to make several similar drugs into a certain data group. One way to determine the level of similarity of the data is through the calculation of the distance between the data. The smaller the distance between the data, the higher the level of similarity between the data and vice versa, the greater the distance between the data, the lower the similarity level. For a number of clusters that may be formed in a data set, an evaluation of the results of clustering is needed. Based on the evaluation carried out on the results of clustering with the value of the silhouette coefficient = 0.4854.

PDF

References

M. J. Abul Hasan dan S. Ramakrishnan, “A survey: hybrid evolutionary algorithms for cluster analysis,†Artif. Intell. Rev., vol. 36, no. 3, hlm. 179–204, Okt 2011.

Jiptake, B. R., & Gohokar, V. V. (2012). A Comparative Analysis of Fuzzy C-Means Clustering and K Means Clustering Algorithms. nternational Journal of Computational Engineering Research , 737-739.

A. K. Jain, M. N. Murty, dan P. J. Flynn, “Data clustering: a review,†ACM Comput. Surv., vol. 31, no. 3, hlm. 264–323, Sep 1999.

Y. Kao dan S.-Y. Lee, “Combining K-means and particle swarm optimization for dynamic data clustering problems,†dalam 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 2009, hlm. 757–761.

S. Alam, G. Dobbie, Y. S. Koh, P. Riddle, dan S. Ur Rehman, “Research on particle swarm optimization based clustering: A systematic review of literature and techniques,†Swarm Evol. Comput., vol. 17, hlm. 1–13, Agu 2014.

E. Rendón, I. Abundez, A. Arizmendi, and E. M. Quiroz, “Internal versus External cluster validation indexes,†vol. 5, no. 1, 2011.

Authors who publish in PENA TEKNIK: Jurnal Ilmiah Ilmu-ilmu Teknik agree to the following terms:

  • Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
  • Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
  • Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.