Abstrak
This study aimed to determine the effect of material density on the sound absorption coefficient (SAC) of composite materials made from rice husk, rice straw, and sawdust. Rice husk, rice straw, and sawdust were made into composite materials with volume fraction variations of 30:70, 25:75, and 20:80 with a thickness of 25 mm. The samples were tested in the 200–1600 Hz frequency range using two microphones and a type 4206 impedance tube in accordance with ASTM E1050 standards. The test findings showed that the composite material made of rice straw had the best SAC at 1600 Hz with an ? value of 0.72 and a volume fraction variation of 30:70, probably because it was less dense than the other materials. The maximum SAC values for the 30:70 volume fraction variation were 0.72 for the rice straw composite material at 1600 Hz, 0.42 for the rice husk composite material at the same frequency, and 0.13 for the sawdust material at 1000 I Hz. The discussion leads one to believe that the SAC is heavily influenced by the bulk density of the forming fiber material and the density that is generated by the fluctuation in volume fraction of a composite material.
Referensi
Ahmad, M. M., Ahmad, F., Azmi, M., & Zahid, M. Z. A. M. (2015). Properties of Cement Mortar Consisting Raw Rice Husk. Applied Mechanics and Materials, 802, 267–271. https://doi.org/10.4028/www.scientific.net/amm.802.267
Alabduljabbar, H., Huseien, G. F., Sam, A. R. M., Alyouef, R., Algaifi, H. A., & Al-Askar, A. A. (2020). Engineering Properties of Waste Sawdust-Based Lightweight Alkali-Activated Concrete: Experimental Assessment and Numerical Prediction. Materials, 13(23), 5490. https://doi.org/10.3390/ma13235490
ASTM E 1050. (1998). Standard test method for impedance and absorption of acoustical materials using a tube, two microphones and a digital frequency analysis system. American Society for Testing of Materials, C, 1–12.
Çelikel, D. C., & Babaarslan, O. (2017). Effect of bicomponent fibers on sound absorption properties of multilayer nonwovens. Journal of Engineered Fibers and Fabrics, 12(4), 15–25. https://doi.org/10.1177/155892501701200403
Chanlert, P., Jintara, A., & Manoma, W. (2022). Comparison of the Sound Absorption Properties of Acoustic Absorbers Made From Used Copy Paper and Corrugated Board. Bioresources, 17(4), 5612–5621. https://doi.org/10.15376/biores.17.4.5612-5621
Fasasi, M. O. (2024). Analysis of Timbercrete: Sawdust-Infused Concrete Mixtures. Open Journal of Environmental Research (Issn 2734-2085), 5(1), 1–13. https://doi.org/10.52417/ojer.v5i1.591
Fauziah, R., Ramli, R., Darvina, Y., & Ratnawulan, -. (2022). Effect of the Volume of Banana Fiber as a Polymer Composite Amplifier With Polyester Resin Matrix on the Sound Absorption of Acoustic Materials. Pillar of Physics, 15(1). https://doi.org/10.24036/12561171074
Hassan, T., Jamshaid, H., Mishra, R., Khan, M. Q., Petr?, M., Tichý, M., & Müller, M. (2021). Factors Affecting Acoustic Properties of Natural-Fiber-Based Materials and Composites: A Review. Textiles, 1(1), 55–85. https://doi.org/10.3390/textiles1010005
Herwandi, H., & Napitupulu, R. (2017). Pengaruh Peningkatan Kualitas Serat Resam Terhadap Kekuatan Tarik, Flexure Dan Impact Pada Matriks Polyester Sebagai Bahan Pembuatan Dashboard Mobil. Turbo Jurnal Program Studi Teknik Mesin, 4(2). https://doi.org/10.24127/trb.v4i2.72
Indrawati, S. (2023). Effect of Fiber’s Size on Acoustic Absorption of Abaca Fiber/Epoxy Resin Composites. Key Engineering Materials, 951, 59–64. https://doi.org/10.4028/p-n7buxr
Jang, E. S. (2023). Sound Absorbing Properties of Selected Green Material—A Review. Forests, 14(7), 1366. https://doi.org/10.3390/f14071366
Lyu, L., Liu, Y., Bi, J., & Guo, J. (2019a). Sound Absorption Properties of DFs/EVA Composites. Polymers, 11(5), 811. https://doi.org/10.3390/polym11050811
Lyu, L., Liu, Y., Bi, J., & Guo, J. (2019b). Sound Absorption Properties of DFs/EVA Composites. Polymers, 11(5), 811. https://doi.org/10.3390/polym11050811
Lyu, L., Zhang, D., Tian, Y., & Zhou, X. (2021). Sound-Absorption Performance and Fractal Dimension Feature of Kapok Fibre/Polycaprolactone Composites. Coatings, 11(8), 1000. https://doi.org/10.3390/coatings11081000
Masykuri, M. (2023). Eco-Friendly of Sound-Absorbing Material Based on Polyurethane-Urea With Natural Fiber Waste. Nano Hybrids and Composites, 41, 9–19. https://doi.org/10.4028/p-cpix3a
Milawarni, M. (2023). Analysis of Physical and Mechanical Properties of Rice Husk-Based Particle Board. Journal of Advanced Research in Applied Sciences and Engineering Technology, 31(3), 43–49. https://doi.org/10.37934/araset.31.3.4349
Missagia, B., Guerrero, C., Narra, S., Sun, Y., Ay, P., & Krautz, H. J. (2011). Physicomechanical Properties of Rice Husk Pellets for Energy Generation. Energy & Fuels, 25(12), 5786–5790. https://doi.org/10.1021/ef201271b
Murdani, A., Hadi, S., & Amrullah, U. S. (2017). Flexural Properties and Vibration Behavior of Jute/Glass/Carbon Fiber Reinforced Unsaturated Polyester Hybrid Composites for Wind Turbine Blade. Key Engineering Materials, 748, 62–68. https://doi.org/10.4028/www.scientific.net/kem.748.62
Nikoo, M., Hafeez, G., Faridmehr, I., Huseien, G. F., & Bedon, C. (2023). Investigating the Fresh and Mechanical Properties of Wood Sawdust-Modified Lightweight Geopolymer Concrete. Advances in Structural Engineering, 26(7), 1287–1306. https://doi.org/10.1177/13694332231161103
Novak, C., Ule, H., & Kunio, J. (2011). Comparative Study of the ASTM E1050 Standard for Different Impedance Tube Lengths. Noise-Con 2011, 9.
Olaiya, B. C., Lawan, M. M., & Olonade, K. A. (2023). Utilization of Sawdust Composites in Construction—a Review. Sn Applied Sciences, 5(5). https://doi.org/10.1007/s42452-023-05361-4
Prabowo, A. E., Diharjo, K., Ubaidillah, U., & Prasetiyo, I. (2019). Sound Absorption Performance of Sugar Palm Trunk Fibers. E3s Web of Conferences, 130, 01003. https://doi.org/10.1051/e3sconf/201913001003
Rumaizah, C. Z., Azaman, F., Hasmizam, R. M., Asmadi, A., & Nor, M. A. A. M. (2019). Properties and Filtration Performance of Porous Clay Membrane Produced Using Sawdust as Pore Forming Agent. Key Engineering Materials, 821, 337–342. https://doi.org/10.4028/www.scientific.net/kem.821.337
Sakagami, K., Okuzono, T., Somatomo, Y., Funahashi, K., & Toyoda, M. (2019). A Basic Study on a Rectangular Plane Space Sound Absorber Using Permeable Membranes. Sustainability, 11(7), 2185. https://doi.org/10.3390/su11072185
Sasria, N. (2022). Composite Manufacturing of Coir Fiber-Reinforced Polyester as a Motorcycle Helmet Material. JMPM (Jurnal Material Dan Proses Manufaktur), 6(1). https://doi.org/10.18196/jmpm.v6i1.13756
Stasiak, M., Molenda, M., Ba?da, M., & Gondek, E. (2015). Mechanical Properties of Sawdust and Woodchips. Fuel, 159, 900–908. https://doi.org/10.1016/j.fuel.2015.07.044
Süvari, F., & Dulek, Y. (2019). Investigating the Effect of Raising on the Sound Absorption Behavior of Polyester Woven Fabrics. Textile Research Journal, 89(23–24), 5119–5129. https://doi.org/10.1177/0040517519848161
Taban, E., Amininasab, S., Mehrzad, S., Fattahi, M., Tajik, L., & Samaei, S. E. (2021). Comparison of Experimental and Empirical Approaches for Determination of Sound Absorption Properties of Bagasse and Cornhusk Fibers. Journal of Natural Fibers, 19(14), 9024–9038. https://doi.org/10.1080/15440478.2021.1982108
Wicaksono, A., Djafar, Z., & Kusno, A. (2023). Sound Absorption Coefficient Analysis for Composite Made of Agricultural Waste. Materials Science Forum, 1091, 161–170. https://doi.org/10.4028/p-mo2395
Zhang, Y., Ghaly, A. E., & Li, B. (2012). Physical Properties of Rice Residues as Affected by Variety and Climatic and Cultivation Onditions in Three Continents. American Journal of Applied Sciences, 9(11), 1757–1768. https://doi.org/10.3844/ajassp.2012.1757.1768

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Hak Cipta (c) 2025 Ariawan Bayu Wicaksono, Muh. Abdillah Muh. Abdillah, Ishak Ishak, Nurhidayanti Nurhidayanti

