Forecasting Model with Box-Jenkins Method to Predict the Number of Tourists Visiting in Toraja
DOI:
https://doi.org/10.35914/jemma.v1i1.75Keywords:
Forecasting, Box-Jenkins Method and TouristsAbstract
This study aims to determine forecasting model with Box-Jenkins method and obtain results of data forecasting the number of tourists visiting in Toraja (Tanah Toraja and North Toraja regency) the future period. Research method used is applied research with quantitative data. Research procedures include identification of model, parameter estimation in model, verification and forecasting with using Minitab computer software. Based on the research obtained four models used in forecasting the number of tourists in Toraja the future period is ARIMA(1,1,1), ARIMA(2,1,1), ARIMA(1,2,1) and ARIMA(2,2,1). The correct criteria in selecting the best model is the model that has the smallest Mean Square (MS) value. In this case the time series model with the smallest MS value is ARIMA(2,2,1) that is 736062253. Thus, this model will used in forecasting is ARIMA(2,2,1) with equations . The forecasting results for January to December 2021 is 149985, 193099, 207559, 202903, 222426, 229294, 239108, 250921, 260701, 271895, 283037 and 294221.
References
Adams, K. M. (2006). Art as politics: Re-crafting identities, tourism, and power in Tana Toraja, Indonesia. University of Hawaii Press.
Aswi dan Sukarna. (2008). Analisis Deret Waktu, Teori dan Aplikasi. Makassar: Andhira Publisher.
Baldigara, T., & Mamula, M. (2015). Modelling international tourism demand using seasonal ARIMA models. Tourism and hospitality management, 21(1), 19-31.
Bakhtiar, B., & Didiharyono, D. (2018). Perkiraan Lonjakan Jumlah Kunjungan Wisatawan di Kabupaten Toraja Utara Tahun 2021 dengan Penerapan Metode ARIMA. Sainsmat: Jurnal Ilmiah Ilmu Pengetahuan Alam, 7(2), 153-162.
Biswas, R., & Bhattacharyya, B. (2013). ARIMA modeling to forecast area and production of rice in West Bengal. Journal of crop and weed, 9(2), 26-31.
Chang, Y. W., & Liao, M. Y. (2010). A seasonal ARIMA model of tourism forecasting: The case of Taiwan. Asia Pacific journal of Tourism research, 15(2), 215-221.
Crystal, E. (2012). Tourism in Toraja (Sulawesi, Indonesia). In Hosts and Guests (pp. 139-168). University of Pennsylvania Press.
Didiharyono, D., Marsal, M., & Nasruddin, N. (2017). Multivariate Regression Analysis With KICC Method In Measuring of Society Welfare In South Sulawesi. Journal of Math Sciences, 2(2), 5-13.
Eni, Daniel and Fola J. Adeyeye. (2015). Seasonal ARIMA Modeling and Forecasting of Rainfall in Warri Town, Nigeria. Journal of Geoscience and Environment Protection. Vol. 3. August 2015, 91-98
Ho, S. L., Xie, M., & Goh, T. N. (2002). A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction. Computers & Industrial Engineering, 42(2-4), 371-375.
Kausar, D. R. K., & Gunawan, M. P. (2018). Managing heritage tourism in Toraja: strengthening local values and improving tourists’ experiences. Journal of Heritage Tourism, 13(6), 550-561.
Kulendran, N., & Wong, K. K. (2005). Modeling seasonality in tourism forecasting. Journal of Travel Research, 44(2), 163-170.
Mondal, P., Labani, S., and Saptarsi, G. (2014). Study of Effectiveness of Time Series Modeling (ARIMA) In Forecasting Stock Prices. International Journal of Computer Science, Engineering and Applications (IJCSEA). Vol.4, No.2, 13-40
Paul, Jiban Chandra; Shahidul Hoque and Mohammad Morshedur Rahman. (2013). Selection of Best ARIMA Model for Forecasting Average Daily Share Price Index of Pharmaceutical Companies in Bangladesh: A Case Study on Square Pharmaceutical Ltd. Global Journal of Management and Business Research Finance. Volume 13, Issue 3, 14-25
Petrevska, B. (2017). Predicting tourism demand by ARIMA models. Economic research-Ekonomska istraživanja, 30(1), 939-950.
Sarpong, Smart A. (2013). Modeling and Forecasting Maternal Mortality; an Application of ARIMA Models. International Journal of Applied Science and Technology. Vol. 3 No. 1, 19-28
Singh, E. H. (2013). Forecasting tourist inflow in Bhutan using seasonal ARIMA. International Journal of Science and Research, 2(9), 242-245.
Steve, Nwankwo. (2014). Autoregressive Integrated Moving Average (ARIMA) Model for Exchange Rate (Naira to Dollar). Academic Journal of Interdisciplinary Studies. Vol. 3. No. 4, 429-433
Wei, William WS. (2006). Time Series Analysis. New York: Pearson Addison Wesle
Downloads
Published
Issue
Section
License
Penulis yang menerbitkan pada JEMMA | Journal of Economic, Management and Accounting menyetujui persyaratan berikut:
- Penulis memiliki hak cipta dan memberikan JEMMA | Journal of Economic, Management and Accounting untuk publikasi pertama dengan karya yang secara bersamaan dilisensikan di bawah Lisensi Atribusi Creative Commons (CC BY 4.0) yang memungkinkan orang lain untuk berbagi (menyalin dan mendistribusikan kembali materi dalam media atau format apa pun) dan beradaptasi (mencampur) , mentransformasikan, dan membangun di atas bahan) karya untuk tujuan apa pun,
- Penulis dapat membuat perjanjian kontrak tambahan yang terpisah untuk distribusi non-eksklusif versi jurnal, yang diterbitkan dari karya tersebut (misalnya, mempostingnya ke repositori institusional atau menerbitkannya dalam sebuah buku), dengan pengakuan atas publikasi awalnya di JEMMA | Journal of Economic, Management and Accounting
- Penulis diizinkan dan didorong untuk memposting pekerjaan mereka secara online (misalnya, dalam repositori institusional atau di situs web mereka) sebelum dan selama proses pengajuan, karena dapat menyebabkan pertukaran yang produktif, serta kutipan yang lebih awal dan lebih besar dari karya yang diterbitkan.